Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion.
نویسندگان
چکیده
The interaction between the cysteine proteases calpain and caspases during renal ischemia-reperfusion (I/R) was investigated. An increase in the activity of calpain, as determined by 1) the appearance of calpain-mediated spectrin breakdown products and 2) the conversion of procalpain to active calpain, was demonstrated. Because intracellular calpain activity is regulated by calpastatin, the effect of I/R on calpastatin was determined. On immunoblot of renal cortex, there was a 50-100% decrease of a low molecular weight (LMW) form of calpastatin (41 kDa) after I/R. Calpastatin activity was also significantly decreased after I/R compared with sham-operated rats, indicating that the decreased protein expression had functional significance. In rats treated with the caspase inhibitor, z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-D-DCB), the decrease in both calpastatin activity and protein expression was normalized, suggesting that caspases may be proteolyzing calpastatin. Caspase 3 activity increased significantly after I/R and was attenuated in ischemic kidneys from rats treated with the caspase inhibitor. In summary, during renal I/R injury, there is 1) calpain activation associated with downregulation of calpastatin protein and decreased calpastatin activity and 2) activation of caspase 3. In addition, in vivo caspase inhibition reverses the decrease in calpastatin activity. In conclusion, proteolysis of calpastatin by caspase 3 may regulate calpain activity during I/R injury. Although the protective effect of cysteine protease inhibition against hypoxic necrosis of proximal tubules has previously been demonstrated, the functional significance in ischemic acute renal failure in vivo merits further study.
منابع مشابه
Calpains mediate acute renal cell death: role of autolysis and translocation.
The goals of this study were to determine 1) the expression of calpain isoforms in rabbit renal proximal tubules (RPT); 2) calpain autolysis and translocation, and calpastatin levels during RPT injury; and 3) the effect of a calpain inhibitor (PD-150606) on calpain levels, mitochondrial function, and ion transport during RPT injury. RT-PCR, immunoblot analysis, and FITC-casein zymography demons...
متن کاملCharacterization of Calpastatin Gene in Iranian Afshari Sheep
Calpastatin is an endogenous inhibitor of calpain (calcium-dependent cysteine protease). Calpastatin activityis highly related to the rate of protein turnover and rate of meat tenderization. In order to characterize thestructure of calpastatin in Iranian Afshari breed of sheep, intron 6 and partial exon 7 of the L domain wereamplified and sequenced. A fragment of approximately...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملاثر حفاظتی سیمواستاتین در آسیب ناشی از ایسکمی – رپرفیوژن کلیه و نقش کانالهای پتاسیمی حساس به آدنوزین تری فسفات
Background & Aim: Renal dysfunction due to ischemia-reperfusion (I/R) injury is a common problem following renovascular surgery or kidney transplantation. There is a lot of emerging evidence that statins, which are HMG-COA reductase inhibitors, have renal protective effects against ischemia-reperfusion injury,but the exact mechanism of their protective effect has not been detected properly....
متن کاملThe Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage
Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 279 3 شماره
صفحات -
تاریخ انتشار 2000